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By (1), {(z)o.0}[«](0) is defined for each a. Let
R(n, a) = (Ea)[a = a(x) for x = ({(n)o,0}[«](0))o].
Clearly (5) (B)(Ex)R(n, B(x)).

We define a partial recursive predicate R; thus.
Ry(n, a) = [a = a;(x1) for oy = At (a)¢ =1, 21 = ({(7)0.0}[x1](0))0].

Wti show_ that (6) R(m, a) = Ry(n, @). Assume R(n, a), and put
Gam &(x) with x = ({(m)o.o}[«)(0))o. By (1), ({(x)o.,0}{e])1,0 realizes-
Y, «, x R(&(x)), whence by Lemma 9.1 (a) it realizes-¥, &(x) R(a)
I;et o = Al (a)¢—1. Then «; agrees with « in its first x values, 5(;
cxl(._t) = a(x), an(i. by Lemma 9.1 (a) ({(n)o,0}[a])1,0 realizes-¥, oy, x
R(a(y))- By (4) with ay, x and x; = ({(=)o,0}[«1](0))o as the a, ¥ and x
x = x1. S0 a = aj(x1). Conversely, @ = a;(x1) implies R(z, aj. ,

We shall find a partial recursive function n with the following
property. Let ST be the set of the sequence numbers barred with
respect to Aa Ry(n, a) (cf. 6.3, 6.5, 6.6). (7) a € ST — {n[=n, a] realizes-
VY, a A(a)}.‘ To prove this, we use an intuitive app]icatiorll of the bar
thcorenj., i.e. we use an induction over ST (the informal analog of
3.26A83 in 6.11, with the recursiveness of ia Ry(n, a) providing the
first hypothesis). We begin by giving the basis and inductionbstep.
In each we derive a specification for n[z, a] that will suffice there
Afterwards we show that a partial recursive 7 can be chosen to satisf :
both specifications. g

B.ASIS: Ry(n,a). Then a = o (x1) etc. By (1), ({(n)o,0}[e1])1,0
realizes-¥, oy, 21 R(&(x)), whence by Lemma 9.1 (a) it rcal-izes—g’ ‘a
R(a?, Also Seq(a), so At O realizes-a Seq(a). So using (2), n[=, a] v.:ill
realize-W, a A(a) if 5=, a] = {{(z)o.1}[a]}[A O, ({(=)o,0}[«1])1,0]-

IND. STEP: Seq(a) & (s)[a*2°*! € ST]. By hyp. ind., for each s
q[n,la*z‘ﬂ] realizes-¥, a%25+1 A(a), whence using Lemma 9.1 (a) iil
realizes-¥, a, s A(ax28*1). So, using (3), n[=n, a] will realize-¥, a A(a)
if i, a) = {{()} (@A O, As [, ax2541]). |

DeFINITION OF 7. It will suffice to have n(n, a] = Aun(n, a, u)
where .

{{(=)o.1}[a]} (220, ({(z)o,0}[At (@)= 1])1.0](1) if Ri(m, a),

y(m, a, u) ~
{{(m)1}[a]}[ALO, As A y(n, ax25+1 {)](1) otherwise.

Upon rcplacin.;,r n by {z}, this equation assumes the form {z}(n, a, u) =~
p(z, 7, @, «) with a partial recursive y. A solution ¢ for z is given by
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the recursion theorem IM p. 353 for 7 as the ¥ with uniformity.
We take y(x, a, 1) == {e}(x, a, ), as remarked after Lemma 8.1 (with
(8.2a)), the specialization of z to e under the operation As is valid.

By (5) and (6): (8) 1 € St Hence by (7), n(x, 1] realizes-¥, | Ala),
whence by Lemma 9.1 (a): (9) nlz, 1] realizes-¥ A(1).

Finally, Az n(=z, 1] realizes-¥ the axiom.

AXI0M SCHEMA X27.1. Va3BA(x, B) D IoVa (VY lyr(2tHxa(y)) >0 &
VB[ViEys(2 a(y) =B +1 D Alm. B))).  Conkwnedy =

Assume (outside the definitions of the recursive functions and the
final step) that = realizes-¥ VaIpA(x, B).

Consider any «. Now (1) for each «, ({m}{e))r realizes-¥, o, f1
Ala, B) for p1 = {({z}[=])o}. Let T = Aa py = Aa{({m}[a])o}. By (1) and
Lemma 8.1, {t}(a] is properly defined, i.e. (2) (O)(E!y)r(2*'*a(y)) >0,
and {r}[«] = p1, whence by 8.1): (3) (T2 '*a(ye))=Fr()+1 where
ye = pyt(2**a(y)) >0.

Now we seek a function pg to realize-7, « Vi lys(2t+1xa(y)) >0, i.e.
vtdy[r(2+1xa(y)) >0 & Vz(r(2t1*xa(z)) >0 D y=z)], taking the in-
equality as a prime formula (cf. preceding *15.1 in 5.5). Consider
any £. Using (3), =(2t*1*a(y)) ~0 is true-t, «, ¢, y and hence is realized-
r,at,y¢ by As0. If o realizest, a £, 2 t(2t+1xx(z)) >0, then
t(2t+1%3(2)) >0 1s true-7, a, {, z, hence by (2) z =y, and hence As 0
realizes-z, y; z=y. Combining these results, Vt3!yz(2t+1xx(y)) >0 is
realized-t, @ by po = At {uyr(2tF1%(y)) >0, ¢As 0, Az Ac s 0>>.

Next we seek a function py to realize-¥, 7, @
Vﬁ[VtByr(Z‘“*&(y))=B(L)+l 5 A(e, B)]. Consider any p. Suppose
o realizes-t, o, f V3y7(2t+1xa(y))=p(t) +1. Then, for each ¢, ({a}[¢])1
realizes-t, a, B, ¥¢ =(2+1xx(y))=B(t)+1 for . = ({a}(¢](0))o; thus
() (2 1*&(7)) =B () + 1. Hence by (2) and (3), p=p1, so by (1)
({}(«])1 realizes-¥, o f Alx, ). So we take p1 = Ap Ao ({a}[x])-

Altogether, the axiom in question 1s realized-¥ by A= <Az, Aa
<po, p1>> for T, po, p1 as above.

(b) Say I' 1s Dy, ..., D;. Now each Dj has a realization function
@s(¥;] general recursive in some finitely-many functions of T:let X
be a list of all the functions of T thus used for j =1, ..., 1, reduced
(if necessary) to one-place functions by end 8.2. By the penultimate
remark in 8.2, it now suffices to construct, for each formula Ag of
the given deduction, a realization function A% @i(¥] of the form
W Wy, ) with AV [V, X] partial recursive; e.g. for Rule 9N
we now use Ay Ax {y[¥, x, Z]}{y]-
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a realizes-¥ A ; by Clause 4 in 8.5, we must infer from (1) that
{Ax AP a}[a] realizes-¥ B 5 A. But by (8.3), {AxApa}(a] = AP a.
Suppose (2) f realizes-¥ B: we must infer from (1) and (2) that
{A[{i‘ «}[B] realizes-¥ A. By (8.3), {Ap a}(f] = «; so what we need
1s (1).

Ib. (ADB)D((A>(B>C))>(ADC). Also 7, via Lemma 9.2.
Az Ap Aa {{p}[a]} ({7} []].

3. A:}(BDA&B). ActAﬁ(a,ﬂ).

4a. A&BDA. Ay (y)e. 4b. A&BDB. 4y (y)1.

S5a. ADAVB. Aa<0, . Sb. BoAVB. 48«1, .

6. (ADC)D((BoC)>(AVBDC)). AndpAc
2 5((2(0))o)- () [(0) 1) )+ 5 ((o(0))o)- ({8} L(a) 1)) ).

8. FAD(ADB). An A 0. Suppose n realizes-¥ nA. Then no
function « rea}izes-h” A. So any function, e.g. A0, realizes-¥ A o B,

ION. VxA(x) D A(t), where A(x), t are as in Lemma 9.1 (a), so
the free variables of the axiom are only ¥, x. Az {x}[¢{(¥, x)]. For,
suppose x realizes-¥, x VxA(x). Then by Lemma 8.2, n realizes-¥
VXA(x). So {n}[{(¥, x)] realizes-¥, ¢(¥, x) A(x), whence by Lemma
9.1 (a) {=}[¢(¥, x)] realizes-¥, x A(t).

10F. VoaA(x) DA(u). Axn{m}[u[¥,«]).

IIN. A(t) D3xA(x). An (P, x), ).

HF. A(u) D3xA(x). An<Au[¥,«], 7).

13. A(0) & ¥x(A(x) D A(X)) D A(x). Axp[x, a], where p 1s defined
by the “functional recursion”

P[0, a] = (a)o,
', o] = {{(«)}[*]}p[x, «]].

Writing p[x, a] = 2 p(x, «, {), this takes the form

P{O; a,l) = ‘P(“' 5),
p(x', o, t) = x(%, @, M p(x, o, £), 8)

where y is primitive, and y is partial, recursive. To prove this p partial
recursive, we apply the recursion theorem IM p. 353 for « as the

¥ (I = 1) with uniformity to solve for z the equation
wle, ) if x =0,
IHX, o, §) ~
{}{ o ) {x(x-'—]'a'u[z}(x_‘_l’a,f},z) if x?&o'

Call the solution ¢, and put p(x, «, t) = {e}(x, «, {). (Cf. Lemma 3.2,
Kleene 1956 § 4, 1959 XXIV)
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14, 17, X1.1: Aa X4 O. 16: An Ap AL 0.

15, and all prime axioms (namely, 18-21, x0.1, the axioms of
Group D): it 0.

x2.1. Vx3aA(x, «) D JaVxA(x, lyx(x, y»)). A=
<A A {({n}[(8)o))o}((£)1), Ax ({n}[x])1>. Suppose n realizes-¥ Vx3IaA(x, o).
Then, for each x, ({n}[x]), realizes-¥, x, {({z}[x])o} A(x, «). Hence by
Lemma 9.1 (b), ({n}(x])1 realizes-¥, x, A& {({=x}[()o))o}((t)1) A(x, Ay
a(<x, ).

RULES OF INFERENCE. 2. A, ADB/B. Noting 8.7, we choose
¥ to include all variables free in A D B. By hyp. ind., there are
general recursive functions « and y such that, for each ¥, «f¥]
realizes-? A and y[¥] realizes- A D B. Let @[¥] = {p[¥P]}«[P]].
Then ¢ is partial recursive, and, for each ¥, ¢[¥] realizes-¥ B;
hence ¢ is general recursive.

9N. CoA(x) /C D VxA(x). Say, for each ¥ and =z, y[Y,x]
realizes-¥, x C D A(x). Then, for each ¥, Ay Ax {y[¥, x]}[y] realizes-
¥ C o VxA(x). 9F. Ay Ax {y['¥, a]}y].

12F. A(x) D C/3xA(x) D C. Ax {p[¥, {(7)o}]}[(7)1] is a realization
function for the conclusion, if y[%, «] is one for the premise. 12N.
Az ([, (=)o)} ()1)- -

AXIOM SCHEMA X26.3c. Va3!xR(&(x)) & ValSeq(a) & R(a) 2 A(a)] &
Va[Seq(a) & VsA(ax2¢1) 3 A(a)] D A(1). il

Assume that = realizes-¥ the antecedent of the main implication
of an axiom by this schema containing free only ¥; all the definitions
and inferences below are under this assumption until the final step,
except that, when we say a predicate or function with x as a variable
is partial recursive, m ranges over all functions.

Now (w)o,0 realizes-¥ Vad!xR(&(x)), ie. Vedx[R(x(x)) &
Vy(R(&(y)) D x=y)]; (n)o,1 realizes-¥ Va[Seq(a) & R(a) D A(a)]; and
(n), realizes-¥ Va[Seq(a) & VsA(ax28+1) D A(a)]. Hence: (1) For
each «, ({(®)o,0}[a])1 realizes-¥, «, x R(a(x)) & Vy(R(z(y)) D x=y)
for x = ({(m)0,0}[«](0))o. (2) For each a, po, p1, if po realizes-a Seq(a)
and p; realizes-¥, a R(a), then {{(z)o,1}[a]}[po, p1] realizes-¥, a A(a)
(cf. (8.1¢)). (3) For each a, po, p1, if po realizes-a Seq(a), and, for
each s, {p1}{s] realizes-¥, a, s A(ax28*1), then {{(n)1}(al}(po, p1]
realizes-¥, a A(a).

Furthermore: (4) For each o, «, y, if ¢ realizes-¥, «, y R(&(y)), then
y = x for the x of (1). For, by (1) {{{(x)o.0}[«])1,1}[¥]}[0] realizes-x, y
X=y, 50 x=¥ is true-x, y.



