CH. II

108 REALIZABILITY

By (1),
$$\{(\pi)_{0,0}\}[\alpha](0)$$
 is defined for each α . Let

$$R(\pi, a) \equiv (E\alpha)[a = \tilde{\alpha}(x) \text{ for } x = (\{(\pi)_{0,0}\}[\alpha](0))_0].$$

Clearly (5) $(\beta)(Ex)R(\pi, \bar{\beta}(x))$.

We define a partial recursive predicate R_1 thus.

$$R_1(\pi, a) \cong [a = \overline{\alpha_1}(x_1) \text{ for } \alpha_1 = \lambda t (a)_t - 1, x_1 = (\{(\pi)_{0,0}\}[\alpha_1](0))_0].$$

We show that (6) $R(\pi, a) \equiv R_1(\pi, a)$. Assume $R(\pi, a)$, and put $a = \bar{\alpha}(x)$ with $x = (\{(\pi)_{0,0}\}[\alpha](0))_0$. By (1), $(\{(\pi)_{0,0}\}[\alpha])_{1,0}$ realizes- Ψ , α , x $R(\bar{\alpha}(x))$, whence by Lemma 9.1 (a) it realizes- Ψ , $\bar{\alpha}(x)$ R(a). Let $\alpha_1 = \lambda t$ $(a)_t - 1$. Then α_1 agrees with α in its first x values, so $\overline{\alpha_1}(x) = \bar{\alpha}(x)$, and by Lemma 9.1 (a) $(\{(\pi)_{0,0}\}[\alpha])_{1,0}$ realizes- Ψ , α_1 , x $R(\bar{\alpha}(y))$. By (4) with α_1 , x and $x_1 = (\{(\pi)_{0,0}\}[\alpha_1](0))_0$ as the α , y and x, $x = x_1$. So $a = \overline{\alpha_1}(x_1)$. Conversely, $a = \overline{\alpha_1}(x_1)$ implies $R(\pi, a)$.

We shall find a partial recursive function η with the following property. Let S_1^π be the set of the sequence numbers barred with respect to $\lambda a \, R_1(\pi, a)$ (cf. 6.3, 6.5, 6.6). (7) $a \in S_1^\pi \to \{\eta[\pi, a] \text{ realizes-} \Psi, a \, A(a)\}$. To prove this, we use an intuitive application of the bar theorem, i.e. we use an induction over S_1^π (the informal analog of *26.8a in 6.11, with the recursiveness of $\lambda a \, R_1(\pi, a)$ providing the first hypothesis). We begin by giving the basis and induction step. In each we derive a specification for $\eta[\pi, a]$ that will suffice there. Afterwards we show that a partial recursive η can be chosen to satisfy both specifications.

Basis: $R_1(\pi, a)$. Then $a = \overline{\alpha_1}(x_1)$ etc. By (1), $(\{(\pi)_{0,0}\}[\alpha_1])_{1,0}$ realizes- Ψ , α_1 , x_1 R($\bar{\alpha}(x)$), whence by Lemma 9.1 (a) it realizes- Ψ , a R(a). Also Seq(a), so λt 0 realizes-a Seq(a). So using (2), a will realize-a A(a) if a =

IND. STEP: Seq(a) & (s) $[a*2^{s+1} \in S_1^{\pi}]$. By hyp. ind., for each s, $\eta[\pi, a*2^{s+1}]$ realizes- Ψ , $a*2^{s+1}$ A(a), whence using Lemma 9.1 (a) it realizes- Ψ , a, s A(a*2^{s+1}). So, using (3), $\eta[\pi, a]$ will realize- Ψ , a A(a) if $\eta[\pi, a] = \{\{(\pi)_1\}[a]\}[\lambda t \ 0$, As $\eta[\pi, a*2^{s+1}]]$.

Definition of η . It will suffice to have $\eta[\pi,a]=\lambda u\;\eta(\pi,a,u)$ where

$$\pi(\pi, a, u) \simeq \begin{cases} \{\{(\pi)_{0,1}\}[a]\}[\lambda t \ 0, (\{(\pi)_{0,0}\}[\lambda t \ (a)_t - 1])_{1,0}](u) & \text{if } R_1(\pi, a), \\ \{\{(\pi)_1\}[a]\}[\lambda t \ 0, & \text{As } \lambda t \ \eta(\pi, a * 2^{s+1}, t)](u) & \text{otherwise.} \end{cases}$$

Upon replacing η by $\{z\}$, this equation assumes the form $\{z\}(\pi, a, u) \simeq \psi(z, \pi, a, u)$ with a partial recursive ψ . A solution e for z is given by

the recursion theorem IM p. 353 for π as the Ψ with uniformity. We take $\eta(\pi, a, u) \simeq \{e\}(\pi, a, u)$; as remarked after Lemma 8.1 (with (8.2a)), the specialization of z to e under the operation Λ s is valid.

By (5) and (6): (8) $1 \in S_1^{\pi}$. Hence by (7), $\eta[\pi, 1]$ realizes- Ψ , 1 A(a), whence by Lemma 9.1 (a): (9) $\eta[\pi, 1]$ realizes- Ψ A(1).

Finally, $\Lambda \pi \eta[\pi, 1]$ realizes- Ψ the axiom.

AXIOM SCHEMA *27.1. $\forall \alpha \exists \beta A(\alpha, \beta) \supset \exists \tau \forall \alpha \{\forall t \exists ! y \tau(2^{t+1} * \bar{\alpha}(y)) > 0 \& \forall \beta [\forall t \exists y \tau(2^{t+1} * \bar{\alpha}(y)) = \beta(t) + 1 \supset A(\alpha, \beta)]\}.$

Assume (outside the definitions of the recursive functions and the final step) that π realizes- Ψ $\forall \alpha \exists \beta A(\alpha, \beta)$.

Consider any α . Now (1) for each α , $(\{\pi\}[\alpha])_1$ realizes- Ψ , α , β_1 A(α , β) for $\beta_1 = \{(\{\pi\}[\alpha])_0\}$. Let $\tau = A\alpha\beta_1 = A\alpha\{(\{\pi\}[\alpha])_0\}$. By (1) and Lemma 8.1, $\{\tau\}[\alpha]$ is properly defined, i.e. (2) $(t)(E!y)\tau(2^{t+1}*\bar{\alpha}(y))>0$, and $\{\tau\}[\alpha] = \beta_1$, whence by (8.1): (3) $(t)\tau(2^{t+1}*\bar{\alpha}(y_t))=\beta_1(t)+1$ where $y_t = \mu y \tau(2^{t+1}*\bar{\alpha}(y))>0$.

Now we seek a function ρ_0 to realize- τ , α $\forall t\exists !y\tau(2^{t+1}*\bar{\alpha}(y))>0$, i.e. $\forall t\exists y[\tau(2^{t+1}*\bar{\alpha}(y))>0 \& \forall z(\tau(2^{t+1}*\bar{\alpha}(z))>0 \supset y=z)]$, taking the inequality as a prime formula (cf. preceding *15.1 in 5.5). Consider any t. Using (3), $\tau(2^{t+1}*\bar{\alpha}(y))>0$ is true- τ , α , t, y_t and hence is realized- τ , α , t, y_t by λs 0. If σ realizes- τ , α , t, z $\tau(2^{t+1}*\bar{\alpha}(z))>0$, then $\tau(2^{t+1}*\bar{\alpha}(z))>0$ is true- τ , α , t, z, hence by (2) $z=y_t$, and hence λs 0 realizes-z, y_t z=y. Combining these results, $\forall t\exists !y\tau(2^{t+1}*\bar{\alpha}(y))>0$ is realized- τ , α by $\rho_0 = \Lambda t \langle \mu y\tau(2^{t+1}*\bar{\alpha}(y))>0$, $\langle \lambda s$ 0, Λz $\Lambda \sigma$ λs 0 $\rangle \rangle$.

Next we seek a function ρ_1 to realize- Ψ , τ , α $\forall \beta [\forall t \exists y \tau(2^{t+1}*\bar{\alpha}(y)) = \beta(t) + 1 \supset A(\alpha, \beta)]$. Consider any β . Suppose σ realizes- τ , α , β $\forall t \exists y \tau(2^{t+1}*\bar{\alpha}(y)) = \beta(t) + 1$. Then, for each t, $(\{\sigma\}[t])_1$ realizes- τ , α , β , \bar{y}_t $\tau(2^{t+1}*\bar{\alpha}(y)) = \beta(t) + 1$ for $\bar{y}_t = (\{\sigma\}[t](0))_0$; thus $(t)\tau(2^{t+1}*\bar{\alpha}(\bar{y}_t)) = \beta(t) + 1$. Hence by (2) and (3), $\beta = \beta_1$, so by (1) $(\{\pi\}[\alpha])_1$ realizes- Ψ , α , β $A(\alpha, \beta)$. So we take $\rho_1 = A\beta$ $A\sigma$ $(\{\pi\}[\alpha])_1$. Altogether, the axiom in question is realized- Ψ by $A\pi < A\tau$, $A\alpha < \rho_0$, $\rho_1 > 0$ for τ , ρ_0 , ρ_1 as above.

(b) Say Γ is D_1, \ldots, D_l . Now each D_j has a realization function $\varphi_j[\Psi_j]$ general recursive in some finitely-many functions of T; let Σ be a list of all the functions of T thus used for $j = 1, \ldots, l$, reduced (if necessary) to one-place functions by end 8.2. By the penultimate remark in 8.2, it now suffices to construct, for each formula A_i of the given deduction, a realization function $\lambda \Psi_i \varphi_i[\Psi_i]$ of the form $\lambda \Psi_i \varphi_i[\Psi_i, \Sigma]$ with $\lambda \Psi_i \Sigma \varphi_i[\Psi_i, \Sigma]$ partial recursive; e.g. for Rule 9N we now use $\Lambda_i \Lambda_i \{ \psi[\Psi_i, \Sigma] \}[\gamma]$.

.

CH. II

 α realizes- Ψ A; by Clause 4 in 8.5, we must infer from (1) that $\{\Lambda\alpha\ \Lambda\beta\ \alpha\}[\alpha]$ realizes- Ψ B \supset A. But by (8.3), $\{\Lambda\alpha\ \Lambda\beta\ \alpha\}[\alpha] = \Lambda\beta\ \alpha$. Suppose (2) β realizes- Ψ B; we must infer from (1) and (2) that $\{\Lambda\beta\ \alpha\}[\beta]$ realizes- Ψ A. By (8.3), $\{\Lambda\beta\ \alpha\}[\beta] = \alpha$; so what we need is (1).

1b. $(A \supset B) \supset ((A \supset (B \supset C)) \supset (A \supset C))$. Also 7, via Lemma 9.2. $\Lambda \pi \Lambda \rho \Lambda \alpha \{\{\rho\}[\alpha]\}[\{\pi\}[\alpha]]$.

3. $A \supset (B \supset A \& B)$. $A \propto A\beta \langle \alpha, \beta \rangle$.

4a. A & B \supset A. $\Lambda \gamma (\gamma)_0$. 4b. A & B \supset B. $\Lambda \gamma (\gamma)_1$.

5a. $A \supset A \lor B$. $A \bowtie \langle 0, \alpha \rangle$. 5b. $B \supset A \lor B$. $A \bowtie \langle 1, \beta \rangle$.

6. $(A \supset C) \supset ((B \supset C) \supset (A \lor B \supset C))$. $\Lambda \pi \Lambda \rho \Lambda \sigma \lambda t \overline{sg}((\sigma(0))_0) \cdot (\{\pi\}[(\sigma)_1])(t) + sg((\sigma(0))_0) \cdot (\{\rho\}[(\sigma)_1])(t)$.

8^I. $\neg A \supset (A \supset B)$. $A\pi \ \text{$t$} \ 0$. Suppose π realizes- $\Psi \neg A$. Then no function α realizes- ΨA . So any function, e.g. $t \not 0$, realizes- $\Psi A \supset B$.

10N. $\forall x A(x) \supset A(t)$, where A(x), t are as in Lemma 9.1 (a), so the free variables of the axiom are only Ψ , x. $\Lambda \pi \{\pi\}[t(\Psi, x)]$. For, suppose π realizes- Ψ , $x \forall x A(x)$. Then by Lemma 8.2, π realizes- Ψ $\forall x A(x)$. So $\{\pi\}[t(\Psi, x)]$ realizes- Ψ , $t(\Psi, x)$ A(x), whence by Lemma 9.1 (a) $\{\pi\}[t(\Psi, x)]$ realizes- Ψ , x A(t).

10F. $\forall \alpha A(\alpha) \supset A(u)$. $\Lambda \pi \{\pi\}[u[\Psi, \alpha]]$.

11N. $A(t) \supset \exists x A(x)$. $\Lambda \pi \langle t(\Psi, x), \pi \rangle$.

11F. $A(u) \supset \exists \alpha A(\alpha)$. $\Lambda \pi \langle \Lambda u [\Psi, \alpha], \pi \rangle$.

13. A(0) & $\forall x(A(x) \supset A(x')) \supset A(x)$. $\Lambda \alpha \rho[x, \alpha]$, where ρ is defined by the "functional recursion"

$$\rho[0, \alpha] = (\alpha)_0,$$

$$\rho[x', \alpha] = \{\{(\alpha)_1\}[x]\}[\rho[x, \alpha]].$$

Writing $\rho[x, \alpha] = \lambda t \rho(x, \alpha, t)$, this takes the form

$$\rho(0, \alpha, t) = \psi(\alpha, t),$$

$$\rho(x', \alpha, t) \simeq \chi(x, \alpha, \lambda t) \rho(x, \alpha, t), t)$$

where ψ is primitive, and χ is partial, recursive. To prove this ρ partial recursive, we apply the recursion theorem IM p. 353 for α as the Ψ (l=1) with uniformity to solve for z the equation

$$\{z\}(x, \alpha, t) \simeq \begin{cases} \psi(\alpha, t) & \text{if } x = 0, \\ \chi(x-1, \alpha, \lambda t \{z\}(x-1, \alpha, t), t) & \text{if } x \neq 0. \end{cases}$$

Call the solution e, and put $\rho(x, \alpha, t) = \{e\}(x, \alpha, t)$. (Cf. Lemma 3.2, Kleene 1956 § 4, 1959 XXIV.)

14, 17, \times 1.1: $\Lambda \pi \lambda t 0$. 16: $\Lambda \pi \Lambda \rho \lambda t 0$.

15, and all prime axioms (namely, 18-21, $\times 0.1$, the axioms of Group D): λt 0.

*2.1. $\forall x \exists \alpha A(x, \alpha) \supset \exists \alpha \forall x A(x, \lambda y \alpha(\langle x, y \rangle))$. $\Lambda \pi$ $\langle \Lambda \lambda t \{(\{\pi\}[(t)_0])_0\}((t)_1), \Lambda x (\{\pi\}[x])_1 \rangle$. Suppose π realizes- $\Psi \forall x \exists \alpha A(x, \alpha)$. Then, for each x, $(\{\pi\}[x])_1$ realizes- Ψ , x, $\{(\{\pi\}[x])_0\}$ $A(x, \alpha)$. Hence by Lemma 9.1 (b), $(\{\pi\}[x])_1$ realizes- Ψ , x, λt $\{(\{\pi\}[(t)_0])_0\}((t)_1)$ $A(x, \lambda y \alpha(\langle x, y \rangle))$.

RULES OF INFERENCE. 2. A, $A \supset B / B$. Noting 8.7, we choose Ψ to include all variables free in $A \supset B$. By hyp. ind., there are general recursive functions α and ψ such that, for each Ψ , $\alpha[\Psi]$ realizes- Ψ A and $\psi[\Psi]$ realizes- Ψ A \supset B. Let $\varphi[\Psi] = \{\psi[\Psi]\}[\alpha[\Psi]]$. Then φ is partial recursive, and, for each Ψ , $\varphi[\Psi]$ realizes- Ψ B; hence φ is general recursive.

9N. $C \supset A(x) / C \supset \forall x A(x)$. Say, for each Ψ and x, $\psi[\Psi, x]$ realizes- Ψ , $x \in A(x)$. Then, for each Ψ , $\Lambda \gamma \Lambda x \{\psi[\Psi, x]\}[\gamma]$ realizes- $\Psi \in A(x)$. 9F. $\Lambda \gamma \Lambda \alpha \{\psi[\Psi, \alpha]\}[\gamma]$.

12F. $A(\alpha) \supset C / \exists \alpha A(\alpha) \supset C$. $\Lambda \pi \{ \psi[\Psi, \{(\pi)_0\}] \} [(\pi)_1]$ is a realization function for the conclusion, if $\psi[\Psi, \alpha]$ is one for the premise. 12N. $\Lambda \pi \{ \psi[\Psi, (\pi(0))_0] \} [(\pi)_1]$.

AXIOM SCHEMA *26.3c. $\forall \alpha \exists ! x R(\bar{\alpha}(x)) \& \forall a [Seq(a) \& R(a) \supset A(a)] \& \forall a [Seq(a) \& \forall s A(a*2^{g+1}) \supset A(a)] \supset A(1).$ Bac Enduction

Assume that π realizes- Ψ the antecedent of the main implication of an axiom by this schema containing free only Ψ ; all the definitions and inferences below are under this assumption until the final step, except that, when we say a predicate or function with π as a variable is partial recursive, π ranges over all functions.

Furthermore: (4) For each σ , α , y, if σ realizes- Ψ , α , y R($\bar{\alpha}(y)$), then y = x for the x of (1). For, by (1) {{(($(\pi)_{0,0}\}[\alpha])_{1,1}[y]}[\sigma]$ realizes-x, y x=y, so x=y is true-x, y.